Modeling Relational Information in Question-Answer Pairs with Convolutional Neural Networks

نویسندگان

  • Aliaksei Severyn
  • Alessandro Moschitti
چکیده

In this paper, we propose convolutional neural networks for learning an optimal representation of question and answer sentences. Their main aspect is the use of relational information given by the matches between words from the two members of the pair. The matches are encoded as embeddings with additional parameters (dimensions), which are tuned by the network. These allows for better capturing interactions between questions and answers, resulting in a significant boost in accuracy. We test our models on two widely used answer sentence selection benchmarks. The results clearly show the effectiveness of our relational information, which allows our relatively simple network to approach the state of the art.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convolutional Neural Networks vs. Convolution Kernels: Feature Engineering for Answer Sentence Reranking

In this paper, we study, compare and combine two state-of-the-art approaches to automatic feature engineering: Convolution Tree Kernels (CTKs) and Convolutional Neural Networks (CNNs) for learning to rank answer sentences in a Question Answering (QA) setting. When dealing with QA, the key aspect is to encode relational information between the constituents of question and answer in learning algo...

متن کامل

Together we stand: Siamese Networks for Similar Question Retrieval

Community Question Answering (cQA) services like Yahoo! Answers1, Baidu Zhidao2, Quora3, StackOverflow4 etc. provide a platform for interaction with experts and help users to obtain precise and accurate answers to their questions. The time lag between the user posting a question and receiving its answer could be reduced by retrieving similar historic questions from the cQA archives. The main ch...

متن کامل

Question Answering over Freebase with Multi-Column Convolutional Neural Networks

Answering natural language questions over a knowledge base is an important and challenging task. Most of existing systems typically rely on hand-crafted features and rules to conduct question understanding and/or answer ranking. In this paper, we introduce multi-column convolutional neural networks (MCCNNs) to understand questions from three different aspects (namely, answer path, answer contex...

متن کامل

End-to-End Quantum-like Language Models with Application to Question Answering

Language Modeling (LM) is a fundamental research topic in a range of areas. Recently, inspired by quantum theory, a novel Quantum Language Model (QLM) has been proposed for Information Retrieval (IR). In this paper, we aim to broaden the theoretical and practical basis of QLM. We develop a Neural Network based Quantum-like Language Model (NNQLM) and apply it to Question Answering. Specifically,...

متن کامل

Modeling Relational Data with Graph Convolutional Networks

Knowledge bases play a crucial role in many applications, for example question answering and information retrieval. Despite the great effort invested in creating and maintaining them, even the largest representatives (e.g., Yago, DBPedia or Wikidata) are highly incomplete. We introduce relational graph convolutional networks (R-GCNs) and apply them to two standard knowledge base completion task...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1604.01178  شماره 

صفحات  -

تاریخ انتشار 2016